The Billingsley Lemma. Dimension of self-affine sets

Now, let us generalize Mass Distribution Principle.
For X & Rd, Cax Q (r) be 6" & addie Cube Containing X, as Letone.
Calmar (B: (Ingsley)
Let k be a Birel set in Rd, M-finite Borel measure on Rd
and M (k) > 0. If here some B3 330

$$d \leq \frac{1}{1+m} \frac{\log n(a, b)}{\log 1} \leq B \forall X \leq k, \frac{1}{ken} d \leq \frac{1}{10mk \leq B}.$$

Pf. Take $2 \leq 2$. By the left imagnality.
(rin $\beta^{dm} - n(0, rx)) = 0 \forall X \in k, by Singelarity lemma
mysleiced to $h(x] = X^{t}$ ($m_{1}(x) = 0$ by ek. by Singelarity lemma
impleiced to $h(x] = X^{t}$ ($m_{1}(x) = \infty$ bot all
 $Tim \beta^{dm} - n(0, rx) = \infty$ bot all $\chi \in k$.
Firston, and here any $\chi \in k \leq f = n(x)$ be the smallest
 n such that $\beta^{dm} - n(0, rx) = \infty$ ($M = 0$).
($R_{h(r)})_{V \in k}$ is a cover of α . related to hore interseting
whenever (Q_{n}). Then diam $Q_{n} \leq S (\delta_{2} + the choice of m(x))$,
 $\equiv (1 \text{ imm } h_{2})^{D} \leq \sum m(Q_{n}) \leq m ||Rd|$. Thus
 $m_{p,1} \in k \leq m ||R|^{d}$. Take $\varepsilon = 0$, to get that $m_{p}(k) < \infty$
($M = n(p)^{D} = 0$ by the left m_{1} ($k < \infty$)
($R = 0$, $1 \leq n \leq \infty$, to get the $M = 0$, $1 \leq \infty$
($R = 0$, $1 \leq m \leq 1$, $1 \leq \infty$, $1 \leq \infty$, $1 \leq \infty$
($R = 0$, $1 \leq m \leq 1$, $1 \leq \infty$, $1 \leq m \leq 1$, $1 \leq \infty$
($R = 0$, $1 \leq m \leq 1$, $1 \leq \infty$, $1 \leq m \leq 1$, $1 \leq \infty$
($R = 0$, $1 \leq m \leq 1$, $1 \leq \infty$, $1 \leq m \leq 1$, $1 \leq \infty$
($R = 0$, $1 \leq m \leq 1$, $1 \leq \infty$, $1 \leq m \leq 1$, $1 \leq \infty$
($R = 0$, $1 \leq m \leq 1$, $1 \leq \infty$, $1 \leq m \leq 1$, $1 \leq \infty$
($R = 0$, $1 \leq \infty$, $1 \leq m < 1$, $1 \leq \infty$, $1 \leq m < 1$, $1 \leq \infty$
($R = 0$, $1 \leq \infty$, $1 \leq m < 1$, $1 \leq \infty$, $1 \leq m < 1$, $1 \leq \infty$
($R = 0$, $1 \leq \infty$, $1 \leq m < 1$, $1 \leq \infty$, $1 \leq \infty$
($R = 0$, $1 \leq \infty$, $1 \leq m < 1$, $1 \leq \infty$, $1 \leq \infty$, $1 \leq \infty$
($R = 0$, $1 \leq \infty$, $1 \leq m < 1$, $1 \leq \infty$, $1 \leq \infty$
($R = 0$, $1 \leq \infty$, $1 \leq \infty$, $1 \leq \infty$, $1 \leq \infty$
($R = 0$, $1 \leq \infty$, $1 \leq \infty$, $1 \leq \infty$, $1 \leq \infty$
($R = 0$, $1 \leq \infty$
($R = 0$, $1 \leq \infty$
($R = 0$, $1 \leq \infty$, $1 \leq \infty$$

Another a pplication: self-similar Sels. Let D be an nxm pattorn on the square: Formally, D c $\{0, ..., n-1\} \times \{0, ..., m-1\}$ Repeat the wattorn on every non-zemoved zertangle. K (D):= $\{\sum_{i=1}^{\infty} (a_{i} h^{-K}, l_{in} m^{-K}) : (a_{i}, l_{in}) \in D\}$. Most tamons: McMullen zet, corresponding to D = $\{(2,0), (1,1), (2,0)\}$ in 3×2 bounding m Contains a chosen rectangle (i.e. V)]: (i,)ED). Then Mdim K(D) = 1+1294 #(D). Exercise: What happens well to terery Tow contains a Chosen rectangle? Proof. let V:= #(D) and tet us look at the j-th range of the

$$\begin{array}{c} \left| \frac{1}{100} \operatorname{root}_{i} \left(\operatorname{tr}_{i} \left(\operatorname{tr}_{i} \left(\operatorname{tr}_{i} \left(\operatorname{tr}_{i} \operatorname{tr}_{i} \left(\operatorname{tr}_{i} \operatorname{tr}_{i} \operatorname{tr}_{i} \operatorname{tr}_{i} \left(\operatorname{tr}_{i} \operatorname{tr}_$$